ILLINOIS INSTITUTE OF TECHNOLOGY

Interprofessional Project 497-354 Developing Sustainable Production Support Systems

Sponsor: Quam-Nichols Company

Team:Alan Beyer
Robert Farmer
Chi Moon
Pablo Portilla
Anish Ramanathan
David Stuart
Nick Taluzek
Zaien Wasfi

- Industrial Technology
- Mechanical Engineering
- Aerospace Engineering
- Information Technology
- Physics
- Aerospace Engineering
- Aerospace Engineering
- Electrical Engineering

IPRO TEAM CHARTER

Quam Nichols aims to enhance the level of manufacturing responsiveness to support the needs of its customers, which is critical to maintaining a competitive advantage. Quam-Nichols company offered the IPRO 354 team the challenge of assessing current production practices and investigating improvement options that could achieve reduced lead times and increased productivity.

Team Emphasis:

- 1. Powder Coating; Process Improvement
- 2. Speaker Assembly; Process Automation

IPRO TEAM DIVISION

Powder Coating (Team Members):

Alan Beyer Anish Ramanathan David Stuart Nick Taluzek Zaien Wasfi

Automation (Team Members):

Robert Farmer Chi Moon Pablo Portillo

PROCESS IMPROVEMENT STRATEGY

Using a statistical approach & Six Sigma methodology – DMAIC

Define the objectives, process, and project goals

Measure key aspects of the current process and collect relevant data

Analyze the data to investigate and verify cause-and-effect relationships

mprove the process based upon data analysis

Control the process by reducing variation and eliminating defects

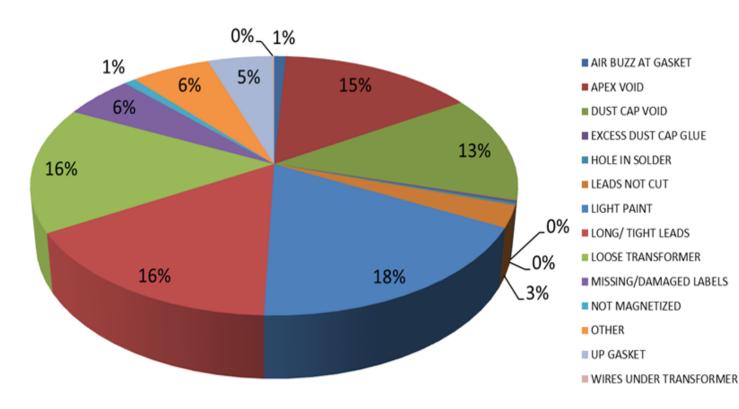
POWDER COATING TEAM OBJECTIVE

The team's objective was to investigate and improve the black powder coating process used by Quam-Nichols Company. The aim was to investigate process alternatives and make suggestions for improvement.

The team sought to achieve success through the implementation of both *Quantitative* and *Qualitative* measures

LOUDSPEAKER 8" BASKET

POWDER COATING PROCESS


STEP 1 HANGING PARTS

STEP 2 WASHING PARTS

STEP 3 POWDER COATING

IDENTIFYING THE PROBLEM

Percentage of total rejects for each type of failure Nov. 2011 - Sept. 2013

18% percent of total rejects is attributed to light paint.

Light paint is the largest contributor to total rejects.

Light paint < ~.5 mil

PROBLEM: UNDERCOATING

Acoustic Effect: Above 1 mil Coating Reduces Quality of Speaker

Visual Effect: Incomplete Coverage (Rejected Part)

POWDER COATING PROJECT GOALS

To minimize number of defects by

- Consistent line operation
- Optimizing rack design

To achieve consistent 1 mil coating thickness by

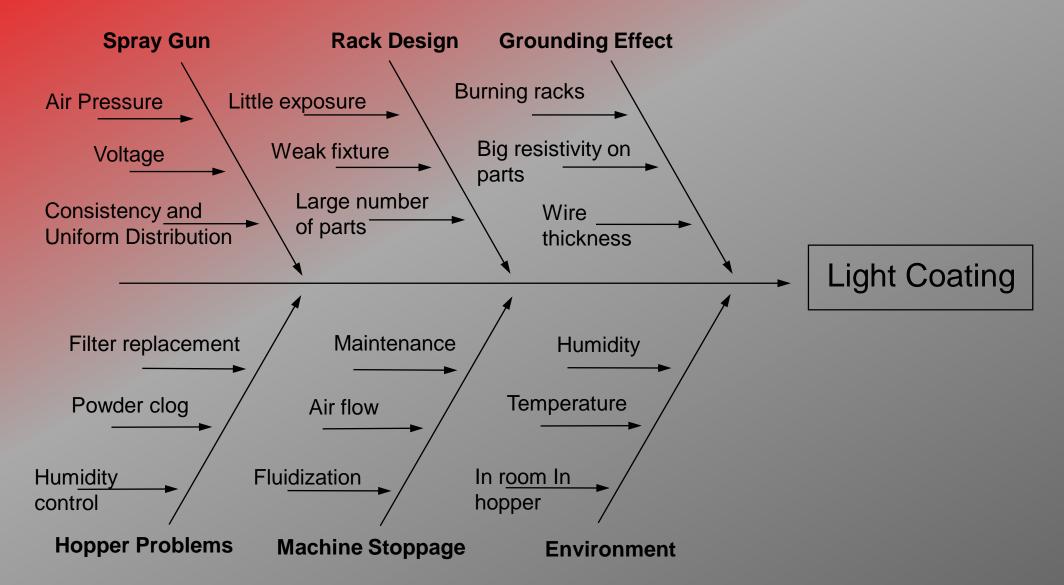
- Adjusting booth settings
- Considering room humidity and temperature

OBSERVATIONS: CLOGGED NOZZLE

- Dispersed Debris (visual and performance effect)
- Inhibits Proper Air Flow (causes undercoating)
- Causes the line to stop

OBSERVATIONS: RACK DESIGN

- Causes interference with parts
- Reduces exposure to cloud



MAIN LINE REJECTS DATA – PART SIZES

Part Size	Total	Percentage of Total	Light Paint Failure	Light Paint Percentage of Part	Light Paint Percentage Failures of Total
Category	Produced	Production	Totals	Size Production	Production
8	584089	66.7%	6744	1.155%	0.770%
4	30223	3.5%	31	0.103%	0.004%
3.5	2017	0.2%	1	0.050%	0.000%
3	34215	3.9%	203	0.593%	0.023%
2.5	155524	17.8%	673	0.433%	0.077%

- Data from Main Line Rejects Excel, Nov. 2011 to Sept. 2013
- 8 inch speakers have the highest rate of light paint failures
- 0.77% of all parts produced fail because of light paint on 8 inch sized assemblies.

CAUSE AND EFFECT

EXPERIMENTATION: EFFECT OF RACK DESIGN

Purpose

To determine the effect of changing rack design on coating thickness

Results

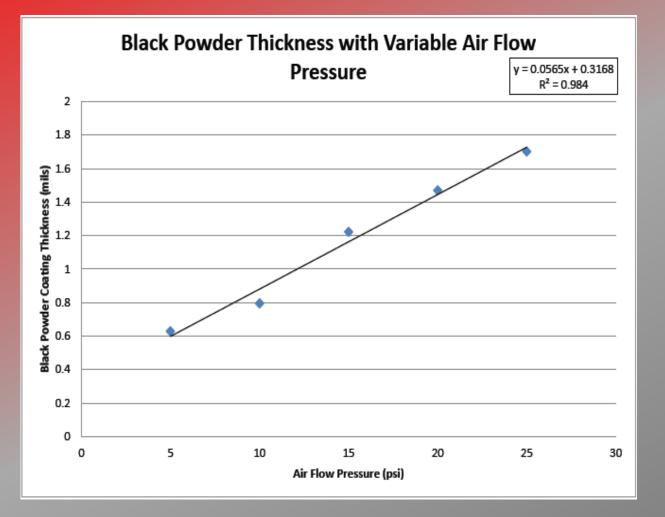
Average of 6 baskets:Baseline0.95 milsHanger1.80 mils

Conclusion Higher coverage No contact damage

T-RACK DESIGN

Experiment average of 8 parts: 1.1 mils

Meets goals


- Maximum exposure to cloud
- No rack-part interference

Accommodates all 6 parts

- 2 baskets (different sizes)
- 2 T-Yokes
- 2 magnets

Available in storage but may need customization for 8" baskets

EXPERIMENT: AIR FLOW PRESSURE

Purpose

To investigate correlation of gun air pressure with coating thickness.

Procedure

- 100 baskets total
- +5 psi after each 20 parts
- •77kV and 22psi atomizing pressure held constant

Conclusion

• 0.0565 mil/psi Relationship

EXPERIMENT: GUN VOLTAGE

Purpose

To investigate correlation of gun voltage with coating thickness.

Procedure

- •80 baskets total
- +10 kV after each 20 parts
- 2 guns used day of experiment

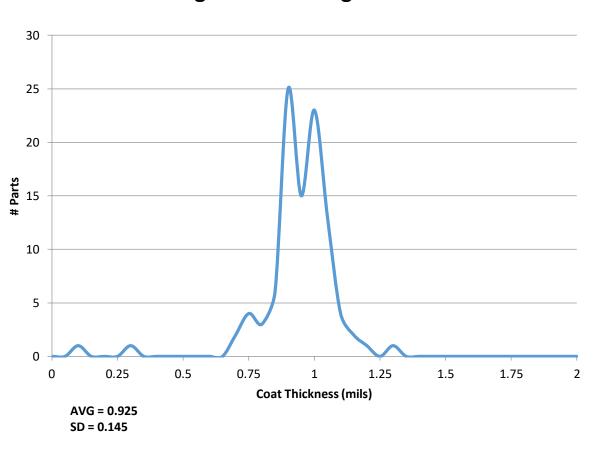
Conclusion

0.0202 mil/kV Relationship

DATA COLLECTION: PROCEDURE

- Current QC procedure is to measure thickness of 10 baskets & t-yokes once a day, and alert the Line Supervisor if noncompliant thickness
 - Apparent gaps allowing systematically overcoated (>2mil) production on certain instances
 - Not frequent enough to ensure consistent thickness being met through day
- Booth data sheets created to quantify booth stoppage, reported by Line Supervisor
 - Previously unmeasured aspect hindering production
 - Provided useful data for study impact of temperature & humidity

DATA COLLECTION: HUMIDITY AND TEMPERATURE


- Initially believed humidity strongly affected booth stoppage
- Data shows no correlation between temperature or humidity and booth performance

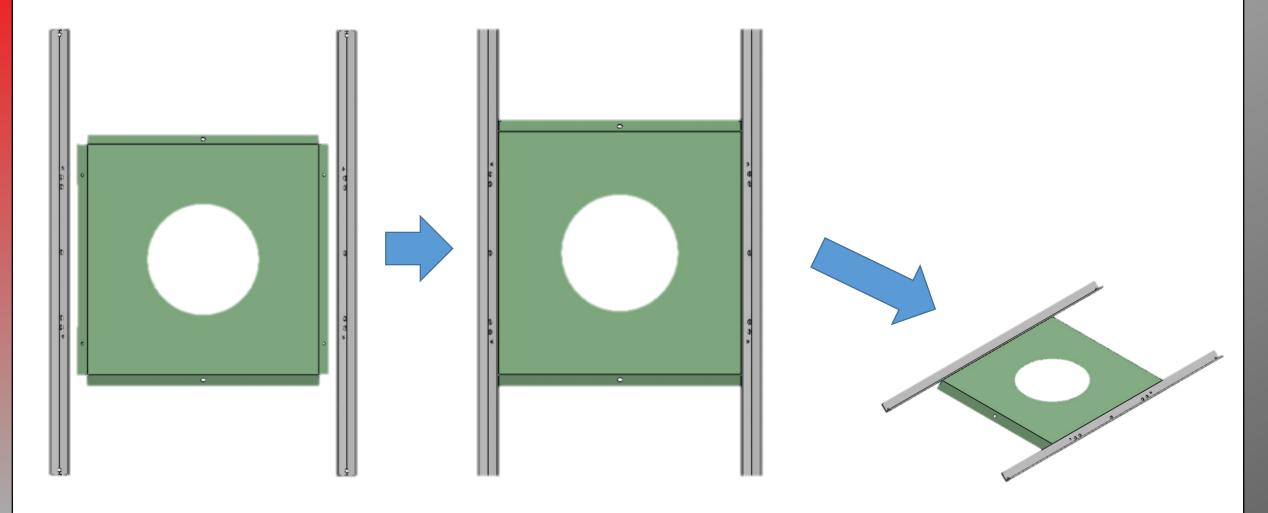
MAINTENANCE OBSERVATIONS – IMPROVED PERFORMANCE

	Daily Booth Stops		Average Temperature (°F)	Average Humidity (%)
Pre -				
Maintenance	8.00	123.2	84.6	47.6
Post -				
Maintenance	4.18	84.5	85.5	26.6

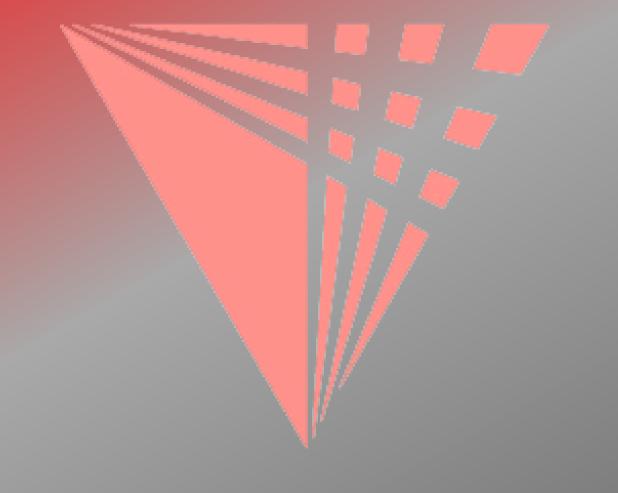
- Almost 50% decline in number of times the booth stopped operating
- Daily number of undercoated parts decreased 1/3
- Shows increased productivity as a result of maintenance

PROCESS CAPABILITY

Histogram of Coating Thickness


- Performed Post-Maintenance
- 3 inch basket parts
- 100 baskets total
- Tested process capability at achieving 1 mil target

ILLINOIS INSTITUTE OF TECHNOLOGY


Automation Team

Team Members: Pablo Portilla Robert Farmer Chi Moon

Bridge Assembly

Bridge Assembly

Goals

- To produce 4000-5000 units per week
- Consistency is more important than faster/efficient production
- Incorporating a form of automation
- Eventual total automation

The automation team made four visits to observe the current process

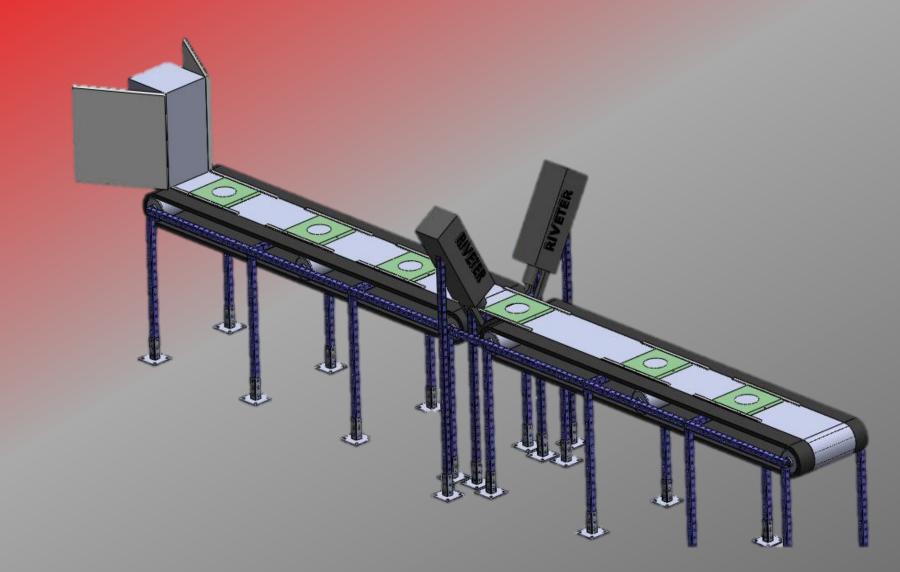
- Pictures/Videos
- Time-motion studies
- Conversations with the line workers

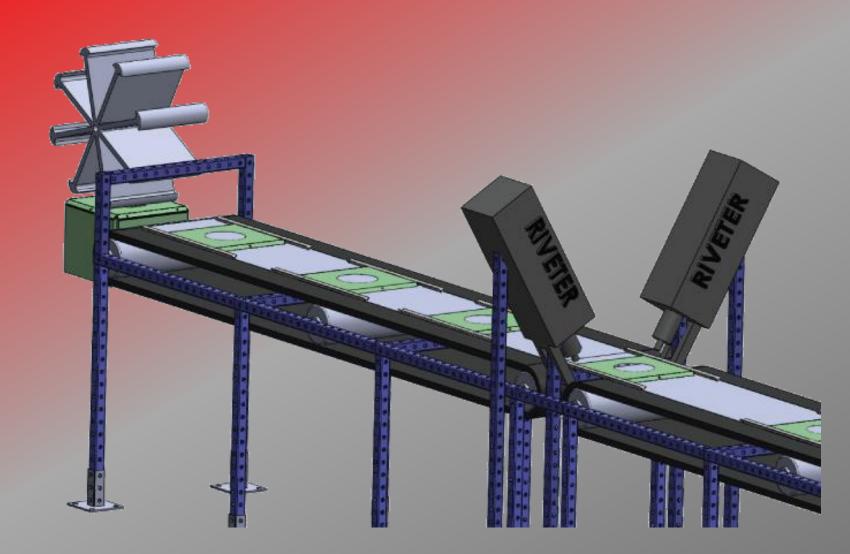
- Riveting machines misfires and jams
 - Jams
 - Average of 2.5 minutes per hour spent on fixing jams
 - More serious incidents can shutdown a machine up to 10 minutes
 - Misfires
 - Less hindering than jams, but important according to worker interview

- Simple repair processes can require the plant supervisor
 - Production stops for several minutes while the supervisor is located
- There is no set production procedure that the workers follow
 - For a box of 25 products, average time: 179 seconds standard deviation: 62.9 seconds.

Part Handling

- Considerable amount of part handling
- About ¼ of manufacturing time is spend on flipping over the product


Practical Layout


- Allows only one machine to rivet one side of the rail, eliminated excess part handling
- Continuous process, estimated 17% improvement in manufacturing timing

Base Plate Riveter 2 Rail #2 Rail #1 Riveter 1 Existing Packaging Solution

Other Practical Propositions

- Repair training
 - Train the line workers to un-jam the riveters
- Resupply signal
 - Can reduce downtime due to lack of parts
- Walkie-talkies
 - Fast communication in events of serious malfunction

- In-line process streamlines productivity
- Use of clinching technology allows for rivetless, jamless assembly

Unistrut Automation

Several possible outcomes:

- Unistrut based design with Norlok clincher
- Unistrut based design with existing riveters
- Norlok based design

Practical Riveting

- Jamming due to possible problem with clutch release
- Refurbishing machine
 - •Low cost repair
 - Large availability of replacement parts
- Scheduled maintenance work
 - Monthly or quarterly re-greasing parts

Norlok

- Norlok is a Canadian manufacturer company of fastening machines
- Experienced with building simple to complex designs
- Wide distributor network across the U.S

Clinching

- Consistent joining
- Easy to operate
- No rivets, bolts, fasteners or adhesives used
- Prevenient resilient bond
- Wide variety of material thickness
- Reduced maintenance and simple adjustments

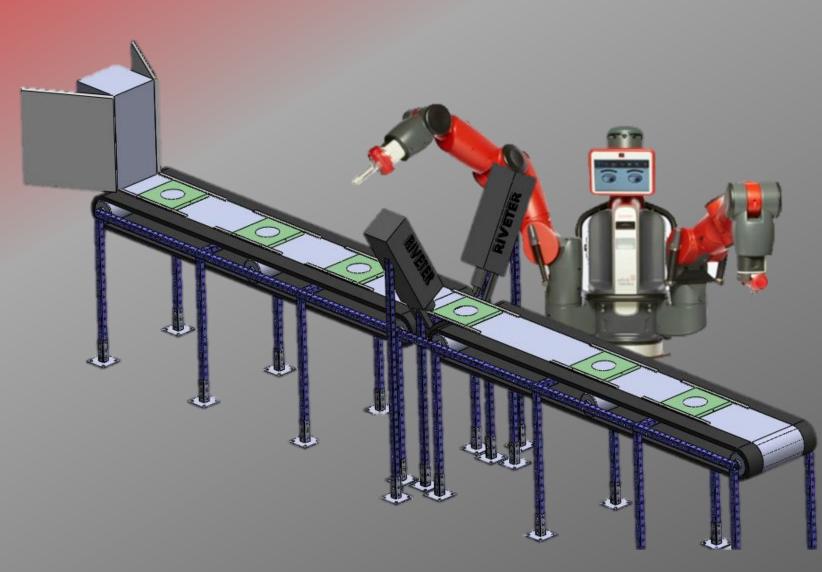
Clinching

Norlok Automation Option

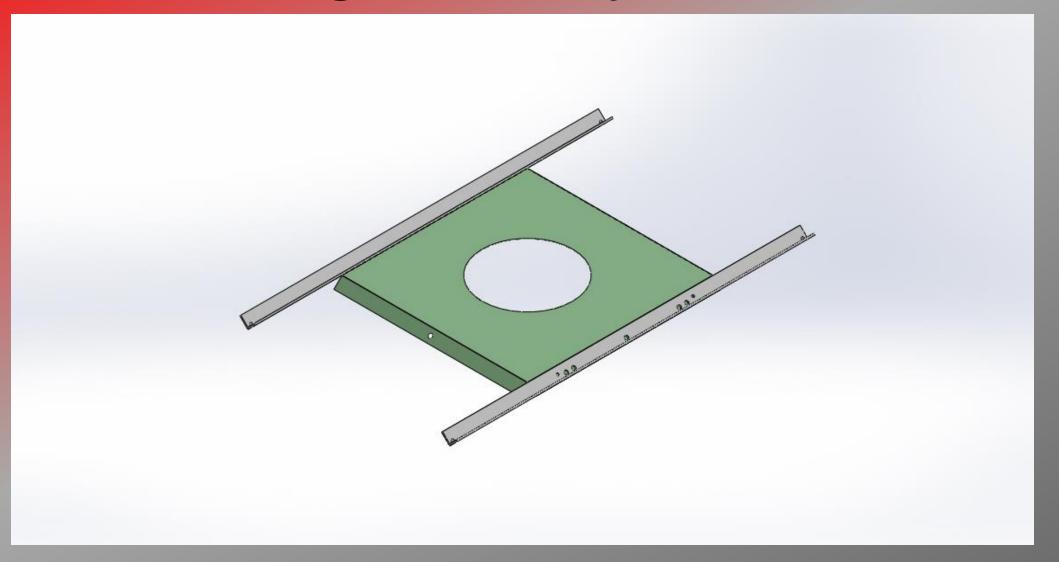
Norlok Automation Option

- Automation system fits a small footprint
- Workers trained through company
- Operator safety
- Environmental friendliness
- Unnecessary parts removed
 - Removing belt (recommended by Norlok)

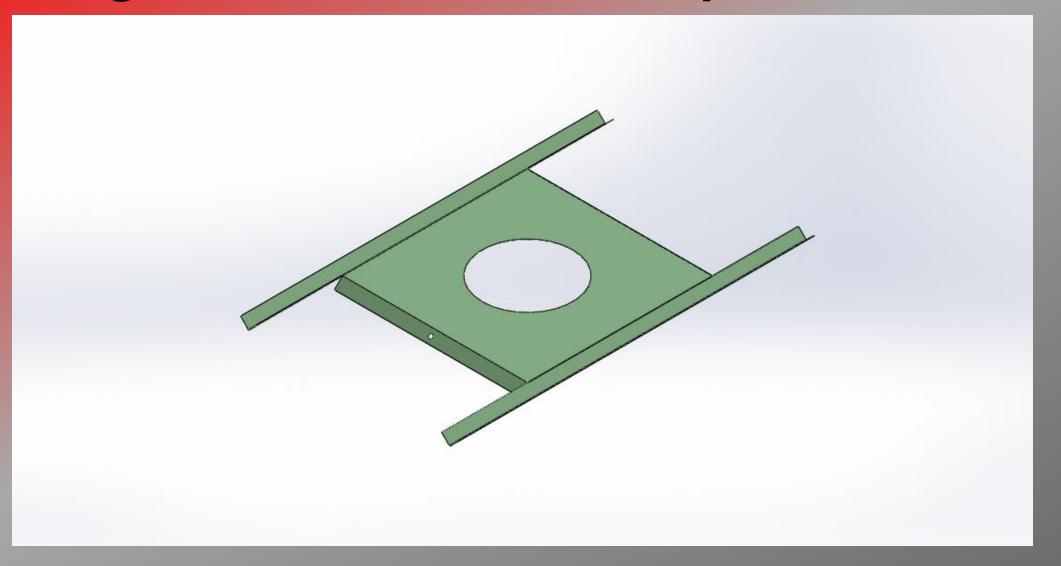
BAXTER


Industrial Robot Extraordinaire

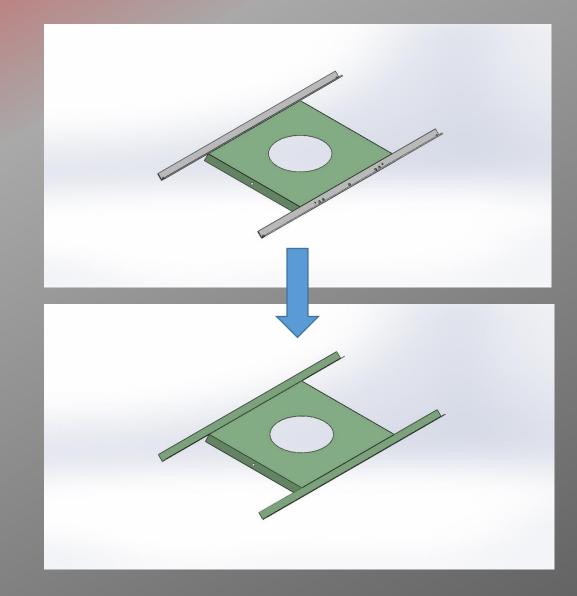
- It requires no safety cages and is safe to operate directly next to people
- There's no programming required line workers can train Baxter manually
- It's very capable and versatile for a range of repetitive tasks
- It allows streamlined integration with your system, when compared with traditional industrial robots
- It works intelligently it knows what you want and does what you expect
- It is an extensible platform add tasks and capabilities via software upgrades



BAXTER


- Allows for continuous production at a lower rate, but a higher overall production
- Regardless of final setup Baxter can be placed in any typical line working position

Current Bridge Assembly



Single Piece Product Concept

Single piece stamp

- Would eliminate the assembly process
- Cuts down on processing mistakes
- Production time would be significantly decreased

AUTOMATION RECOMMENDATIONS: EXISTING MACHINERY

Rearrangement of process, including changes to the procedure

AUTOMATION RECOMMENDATIONS: UNISTRUT SOLUTION

 Automate system using Unistrut and basic controls system

AUTOMATION RECOMMENDATIONS: NORLOK SOLUTION

Custom build riveting solution with Norlok

AUTOMATION RECOMMENDATIONS: SINGLE-PIECE CONSTRUCTION

 Investigate possibility of a one piece bridge and eliminate assembly process completely.

POWDER COATING RECOMMENDATIONS: VISION SYSTEM

- Addressing the cause of poor coverage booth performance – identified as more effective than spotting problem
- Noncontact scanning instruments (which would measure parts on line) not available commercially
- Camera systems cannot detect overcoating

POWDER COATING RECOMMENDATIONS: DATA COLLECTION

- Continue booth data collection sheets to spot worsening booth performance and fill gap in QC data
- Revamp existing QC thickness measurement procedures

-Rather than once a day, measure parts at startup and throughout day

POWDER COATING RECOMMENDATIONS: MAINTENANCE

- Follow standard operating procedures designed from the Nordson manual to ensure proper use of the equipment
 - Perform regularly scheduled booth maintenance
 to ensure optimum performance

POWDER COATING RECOMMENDATIONS: PART-SPECIFIC BOOTH SETTINGS

 Booth settings should be established for each type of part to be powder coated (i.e. larger speaker assemblies require higher voltage or air pressure settings)

POWDER COATING RECOMMENDATIONS: NEW RACK DESIGN

 Begin using a rack design that exposes the parts (T-Rack design is suitable for this)

POWDER COATING RECOMMENDATIONS: REPLACE OHMETER

 Replace the ohmmeter used to measure rack grounding

And A Special Thanks To:

- Randy for all of his help and guidance
- Tony for helping us understand the powder booth and process, providing ideas on improved operation & recording booth data
- Chuck for assisting us with our tests
- Angie for explaining the QC procedure and